
PROJETO DE MAPEAMENTO DOS VENTOS (ANGOLA)

Autor: Cristóbal López (Avril 2016)

EREDA

ESQUEMA DA APRESENTAÇÃO

Actividades previas Consorcio EREDA-UNIVERSAL

Descrição de actividades realizadas projecto Mapeamento

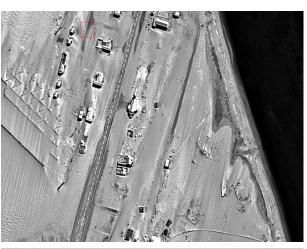
Resultados: Projectos

prioritarios

Centro de Recolha e Análise de Dados MINEA

EREDA

DESCRIÇÃO ACTIVIDADES



- Caracterização topohidrográfica e de condições do vento e radiação solar em Baia dos Tigres. Desenho de sitema híbrido 100 % renovavel
- Caracterização de condições do vento e radiação solar Tombwa
- Caracterização de condições do vento e radiação solar Namibe
- Caracterização logística, geotécnica, ambiental e da rede eléctrica nacional, das suas necessidades de reforço e capacidades de conexão
- Engenharia de construção y elaboração cadernos de encargos para um parque eolico 100 MW y su manutenção em Tombwa
- Actividades de formação em Angola e em Espanha
- Modelagem mesoescalar do território de Angola e caracterização preliminar do vento e a radiação solar em todo o país
- Medições com um total de 17 estações meteorológicas. Mapas de ventos e radiação solar de Angola
- Desenho, abastecimento, instalação e começo serviço do Centro de Recolha de Dados do Ministério de Energia e Água

Trabalhos realizados

- 1. Recolha inicial de informação (satélite, etc.)
- 2. Visita inicial Relatório Topohidrografico
- 3. Avaliação dos recursos com satélite (extra)
- 4. Desenho conceptual
- 5. Medições do vento e radiação solar
- 6. Formação para manutenção das estações meteorológicas
- 7. Definição e classificação das cargas
- 8. Desenho de configuração do sistema
- 9. Desenho lógico de controlo e estabilidade
- 10. Avaliação final / Projeto / Especificações técnicas

Medições de vento e radiação solar

Instalação de duas estações meteorológicas

Baía dos Tigres01:

UTM X (m): 790418

UTM Y (m): 8166467

H (m): 6

Instalada em19/05/2009

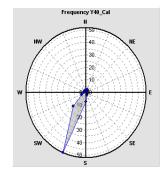
• Baía dos Tigres 02:

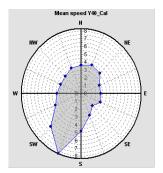
UTM X (m): 789966

UTM Y (m): 8168494

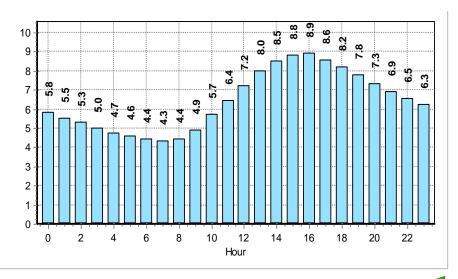
H (m): 4

Instalada em20/05/2009

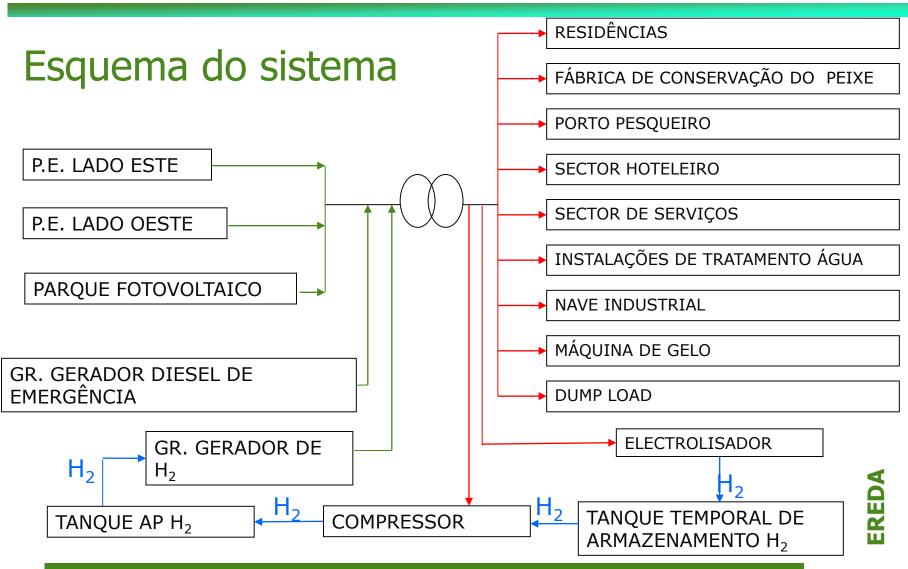

(Fuso 32)


Medições de vento e radiação solar

Período de medição: 12 meses

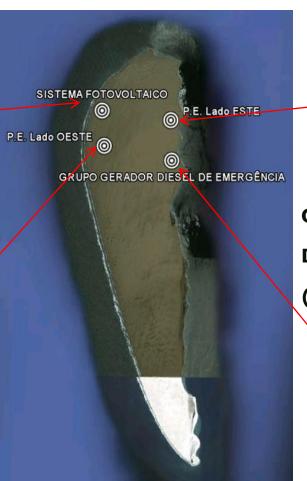

ROSA DE DIRECÇOES MÉDIAS A 40 m

ROSA DE VELOCIDADES MÉDIAS DO VENTO A 40 m



DIA MÉDIO DE VELOCIDADE A 40 m

ERED/


Sistema de produção de energia

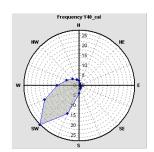
SISTEMA FV (4.20 MW)

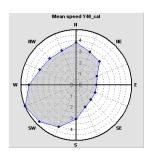
P.E. LADO OESTE (17.0 MW)

P.E. LADO ESTE (6.8 MW)

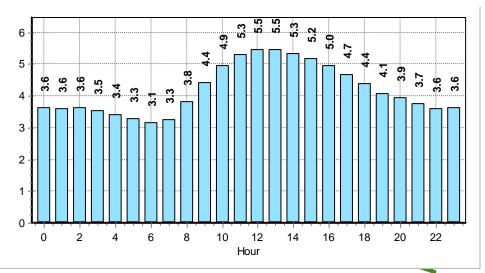
GRUPOS GERADORES
DIESEL DE EMÊRGENCIA
(1.0 MW)

EREDA


PRÉVIAS: MEDIÇÕES NAMIBE

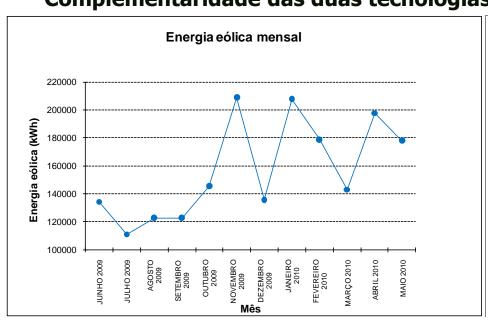

Medições de vento e radiação solar

Período de medição: 12 meses

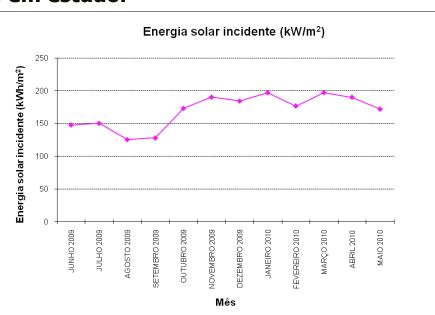

ROSA DE DIRECÇOES MÉDIAS A 40 m

ROSA DE VELOCIDADES MÉDIAS DO VENTO A 40 m

DIA MÉDIO DE VELOCIDADE A 40 m



PRÉVIAS: MEDIÇÕES NAMIBE

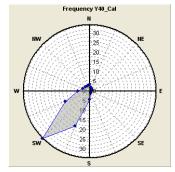


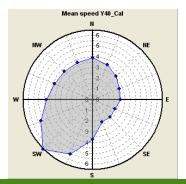
Integração da produção de energia eólica e solar

Complementaridade das duas tecnologias em estudo.

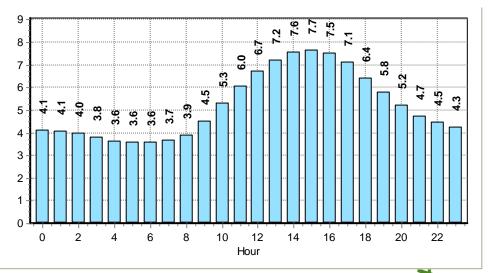
Média de energia eólica mensal

Média de energia solar incidente mensal


PRÉVIAS: MEDIÇÕES TOMBWA

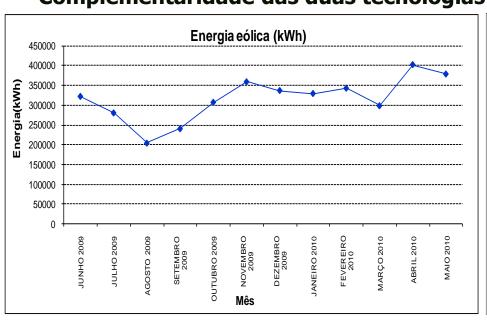

Medições de vento e radiação solar

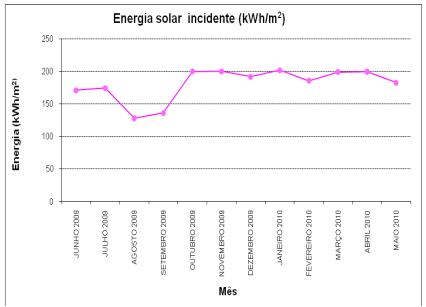
Período de medição: 12 meses


ROSA DE DIRECÇOES MÉDIAS A 40 m

ROSA DE VELOCIDADES MÉDIAS DO VENTO A 40 m

DIA MÉDIO DE VELOCIDADE A 40 m


ERED/


PROJETO MEDIÇÕES TOMBWA

Integração da produção de energia eólica e solar

Complementaridade das duas tecnologias em estudo.

Média de energia eólica mensal

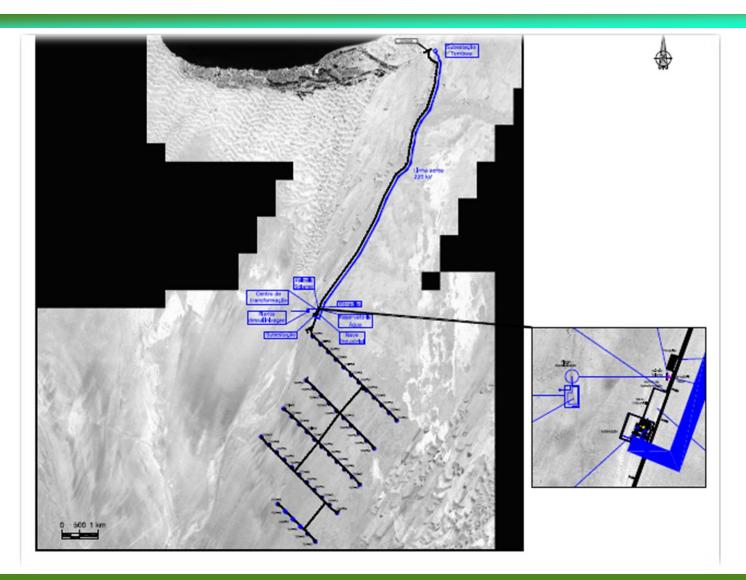
Média de energia solar incidente mensal

PRÉVIAS: PARQUE EÓLICO TOMBWA

Alcance do projeto de engenharia

 Construção civil. • Produção de energia. Sistema eléctrico. Instalações auxiliares. Subestação transformadora. • Linha aerea de evacuação.

PRÉVIAS: PARQUE EÓLICO TOMBWA


Instalações Auxiliares

- Poço de captação de agua
- Sistema de Tratamento de Água
- Reservatório de Água
- Paineis termosolares
- Fossas sépticas
- Contentores-escritório, refeitório, dormitório e armazém
- Zona de carpintarias
- Vedações
- Zona de preparação de aço estrutural e aço de armar

EREDA

PRÉVIAS: PARQUE EÓLICO TOMBWA

PRÉVIAS: PARQUE ÉOLICO TOMBWA

Redução de emissões de CO₂

Emissões de CO₂ relacionadas com a produção de electricidade em Angola no ano 2009 (último ano referenciado): **237 g/KWh.**

Estas emissões devem ir diminuindo em Angola com a introdução de novas potências hidráulicas.

Geração deslocada na provincia de Namibe de origem fóssil.

Com a geração actual em Namibe o factor de emissão é de 992 gramas CO₂ por cada kWh para 2009.

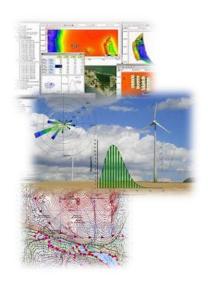
Interconexão Tombwa á rede nacional posto que sua energia será entregada para o consumo em todo o país, e não só em Namibe. O volume reduzido anualmente pelo funcionamento do parque eólico seria de **49.297 Toneladas** de **CO₂.**

PRÉVIAS: PARQUE EOLICO TOMBWA

Outros Efeitos

Dinamização de emprego de qualidade.

Diminuição de consumo de combustíveis fósseis, que na actualidade se utilizam para o abastecimento de electricidade.


A capacitação de formas de geração sem consumo destes combustíveis terão um efeito adicional de liberar quantidades importantes de petróleo para sua venda no mercado internacional.

A produção associada ao parque eólico liberará uma quantidade aproximada de **311,4** milhares de barris de petróleo ao ano

ESTUDO DE VIABILIDADE

Parâmetros avaliados

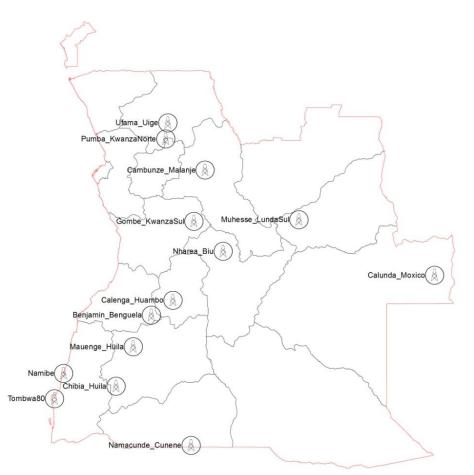
Parâmetro	Valor
Horas equivalentes de produção de energia	2.080
Produção anual de energia (kWh)	208.000.000
Custo de operação (€/kW)	41,6
Anos de vida	20
Taxa de desconto (%)	8
Taxa de juros (%)	6
Inflação (%)	2
Imposto (%)	17,5
Período de reembolso da dívida (anos)	12
Período de amortização (anos)	8

PRÉVIAS: FORMAÇAO

Em Namibe: 40 horas (curso completo energia eolica)

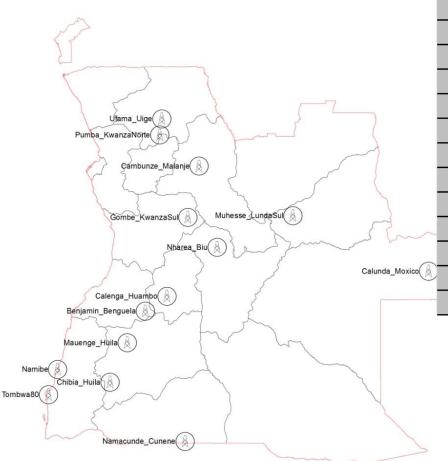
Em Espanha: curso 12 horas + visitas (eolico, solar)

Em Espanha: Formacao 3 meses en Master Energías Renovaveis para 3 técnicos MINEA



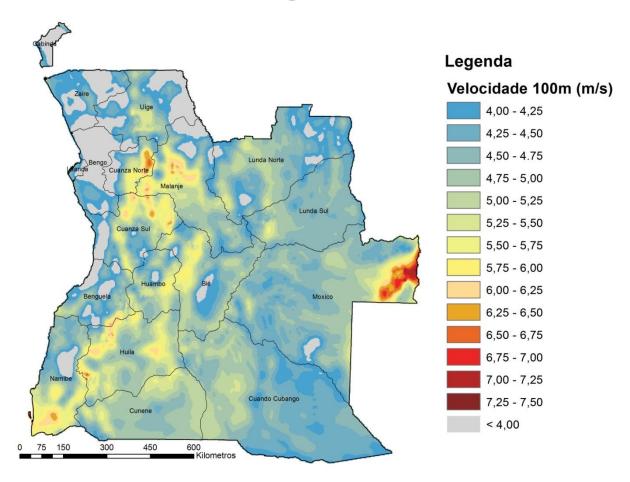
Actividades realizadas

- Mapas sobre dados obtidos de satélite (Mapa de versão zero) res. 2,5 Km
- Instalação de 12 estações meteorológicas Nov. 2013 e Maio de 2014
- Ajuste de mapa eólico mediante a medição com 15 estações meteorológicas. Res. 1 Km nas zonas de maior interesse
- Fornecimento de centro para recolha e analise de dados no Minea
- Formação de 3 técnicos do Minea em Mestrado de Energias Renováveis em modulos de Energia eólica, Energia solar Fotovoltaica e Energia Solar Termoeléctrica
- Mapas de velocidade do vento de média anual, produção energética eólica esperada média anual (P50) para as alturas de 50, 75 e 100 m
- Mapas de radiação solar de média anual, produção energética esperada média anual (P50)
- Determinação de 10 projectos eólicos priritários de média e grande potência conectado à rede nacional
- Determinação de 10 projectos solares PV de 10 MW de potência conectados à rede nacional


Estações meteorológicas

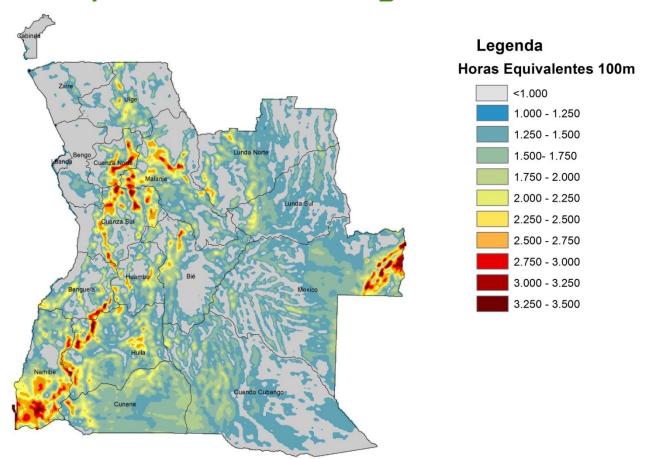
Estação	X (m) Y (m) UTM WGS84 UTM WGS84		Altura (m)
Ufama_Uige	534078	9175438	80
Pumba_KwanzaNorte	527049	9120641	80
Cambunze_Malanje	659565	9015298	80
Muhesse_LundaSul	315956	8847220	80
Gombe_KwanzaSul	620806	8841785	80
Nharea_Bié	718197	8739958	80
Calunda_Moxico	769010	8658429	80
Calenga_Huambo	550597	8575067	80
Benjamin_Benguela	479025	8524816	62
Mauenge_Huila	419130	8417169	80
Chibia_Huila	363390	8283357	62
Namacunde_Cunene	608329	8083507	62
Namibe_Namibe	190829	8325486	40
Tombwa_Namibe	804235	8239900	80
Baia_Namibe	789966	8168494	40

Estações meteorologicas

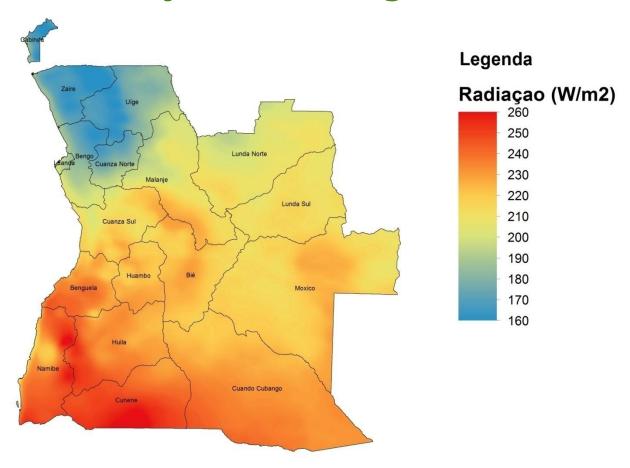


	Densidade	Perfil v	/ertical	VelTop	Vel100	Dir		Rad
Estação	(kg/m³)	Dia	Noche	(m/s)	(m/s)	(°)	Classe	(W/m2)
Ufama								
Uige	1,038	0,081	0,322	5,17	5,47	WSW	III	180,03
Pumba								
Kwanza Norte	1,035	0,04	0,239	4,89	5,09	WSW	III	179,63
Cambunze								
Malanje	1,033	0,151	0,192	6,7	6,99	WSW	III	207,27
Muhesse								
Lunda Sul	1,013	0,123	0,354	5,78	6,05	SE	III	214.21
Gombe								
Kwanza Sul	0,998	0,101	0,231	5,93	6,46	SE	III	223,64
Nharea								
Bié	0,975	0,102	0,267	5,75	6,27	ESE	III	215,12
Calunda								242.42
Moxico	0,999	0,138	0,324	6,63	7,21	ESE	III	213,48
Calenga Huambo	0.056	0.065	0.100	F 76	6.26	w	III	226 57
	0,956	0,065	0,189	5,76	6,26	VV	111	226,57
Benjamin Benguela	0,973	0,09	0,139	6,08	6,77	ESE	III	237,48
Maunge	, i	,	, and the second	,				, , , , , , , , , , , , , , , , , , , ,
Huila	0,989	0,122	0,209	6,45	6,86	WSW	III	243,69
Chibia								
Huila	1,013	0,241	0,368	5,42	6,7	W	III	257,21
Namacunde								
Cunene	1,031	0,181	0,491	4,72	5,9	E	III	255,89

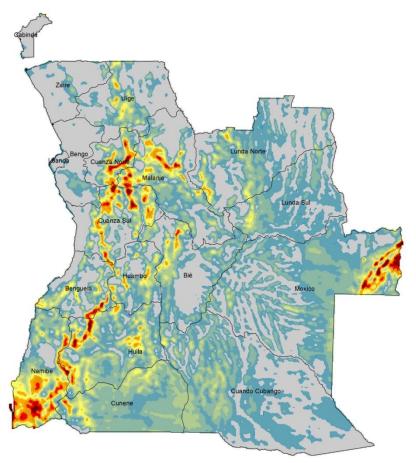
REDA



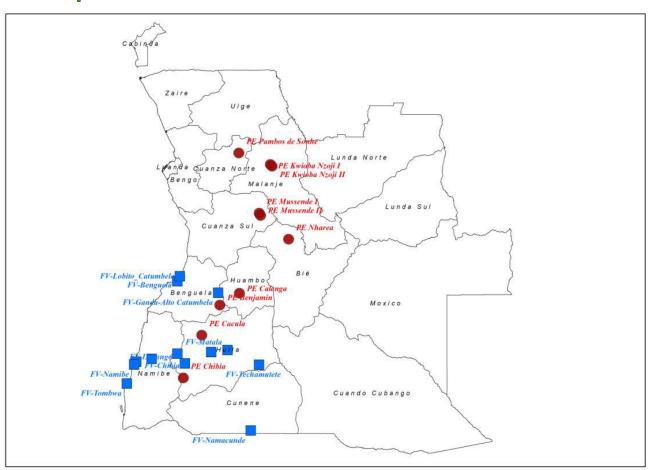
Mapas do vento Angola



Horas equivalentes energia eólica



Mapas radiação solar Angola


Potencial eólico bruto

	Área	Área com	POTENCIAL
	Total	FC>20%	BRUTO
Província	[km²]	[km2]	[GW]
Bengo	34300	97	0.1
Benguela	39500	7.325	7.3
Bié	72100	5.414	5.4
Cabinda	7100	38	0.0
Cuando Cubango	200600	1.375	1.4
Kwanza Norte	23800	7.528	7.5
Kwanza Sul	55200	17.292	17.3
Cunene	77200	8.038	8.0
Huambo	33100	4.848	4.8
Huíla	78600	20.062	20.1
Luanda	2400	0	0.0
Lunda Norte	108600	4.725	4.7
Lunda Sul	78600	1.529	1.5
Malanje	82200	15.365	15.4
Moxico	202100	13.911	13.9
Namibe	58000	29.110	29.1
Uíge	62000	3.939	3.9
Zaire	36600	0	0.0

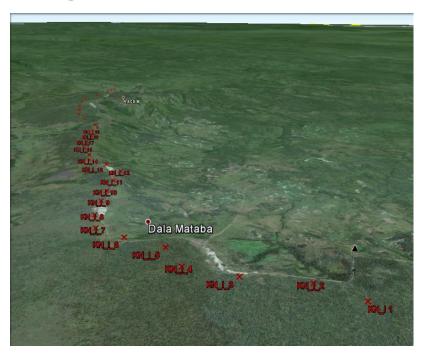
Projetos prioritários

Projetos prioritários: Energia Eólica

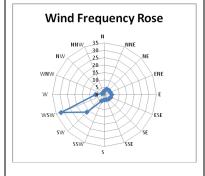
Parque	Nº Turbinas	Potência [MW]	AEP Bruta [MWh]	Esteiras [%]	AEP Neta [MWh]	AEP corrigida [MWh]	Horas Equivalentes
Kiwaba Nzoji I (MA)	31	62	207.865	0,84	206.119	186.257	3.004
Cacula (HUI)	44	88	259.332	1,44	255.592	230.963	2.625
Benjamin (BL)	26	52	139.528	1,05	138.069	124.765	2.399
Gastão (KN)	15	30	74.325	0,68	73.817	66.704	2.223
Nharea (BIE)	18	36	104.326	2,94	101.263	91.505	2.542
Calenga (HUA)	42	84	209.006	1,39	206.094	186.234	2.217
Mussende I (KS)	18	36	104.817	2,17	102.543	92.662	2.574
Chibia (HUI)	39	78	136.527	0,71	135.555	122.493	2.552
Kiwaba Nzoji II (MA)	21	42	134.733	0,89	133.540	120.672	2.873
Mussende II (KS)	22	44	119.467	2,11	116.952	105.683	2.402

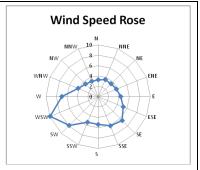
Projetos prioritários: Energia Solar PV

Parque	Glob. Hor	Glob. Inc	DifS/GI	EArray	E_Grid	PR	EffSysC
	[kWh/m ²]	[kWh/m²]		[kWh]	[kWh]		[%]
Caraculo (NAM)	2.104,80	2.188,60	0,408	20.319	19.811	0,814	14,16
Matala (HUI)	2.077,70	2.196,30	0,338	20.396	19.884	0,814	14,16
Namacunde (CU)	2.229,90	2.366,20	0,302	20.667	20.154	0,766	13,32
Ganda/Alto Catumbela (BL)	1.967,60	2.061,30	0,404	20.564	20.042	0,874	15,21
Lubango (HUI)	2.200,40	2.325,50	0,305	20.802	20.284	0,784	13,64
Benguela (BL)	1.967,60	2.049,00	0,409	19.213	18.744	0,822	14,31
Cambongue/Namibe (NAM)	1.873,00	1.916,10	0,522	17.445	17.033	0,799	13,9
Quipungo (HUI)	2.070,50	2.188,20	0,342	20.328	19.819	0,814	14,17
Lobito/Catumbela (BL)	1.967,60	2.047,10	0,41	19.194	18.726	0,822	14,31
Techamutete (HUI)	2.014,20	2.136,70	0,358	19.832	19.340	0,814	14,13


Projetos prioritários

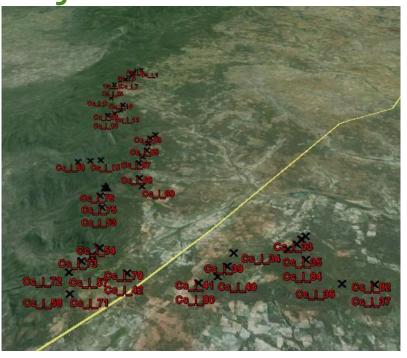
REDUÇÃO EMSSÕES CO ₂ - ENERGIA EÓLICA					
Davassa	Potência	Energia.	Redução		
Parque	MW	Prod.	CO ₂		
		[MWh]	[Tn]		
Kiwaba Nzoji I	62	186.257	118.573		
Cacula	88	230.963	147.033		
Benjamin	52	124.765	79.427		
Gastão	30	66.704	42.464		
Nharea	36	91.505	58.253		
Calenga	84	186.234	118.558		
Mussende I	36	92.662	58.990		
Chibia	78	122.493	77.974		
Kiwaba Nzoji II	42	120.672	76.821		
Mussende II	44	105.683	67.279		
TOTAL		1.327.938	845.372		


REDUÇÃO DE EMISSÕES CO ₂ - ENERGIA SOLAR					
Dangue	Nº Energia.		Redução		
Parque	Mód.	Prod.	CO ₂		
		[MWh]	[Tn]		
Caraculo	36.480	19.811	12.612		
Matala	36.480	19.884	12.658		
Namacunde	36.480	20.154	12.830		
Ganda/Alto	36.480				
Catumbela	30.460	20.042	12.759		
Lubango	36.480	20.284	12.913		
Benguela	36.480	18.744	11.933		
Cambongue/Namibe	36.480	17.033	10.843		
Quipungo	36.480	19.819	12.617		
Lobito/Catumbela	36.480	18.726	11.921		
Techamutete	36.480	19.340	12.312		
TOTAL		193.836	123.398		

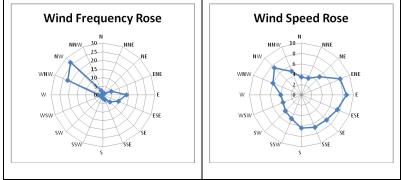


Projetos eólicos: Kiwaba Nzoji I (Malanje)

31 aerogeradores x 2 MW: 62 MW 70 km N de Malanje


Redução esperada de emissões CO₂:

118.573 Tn

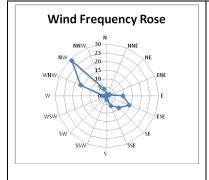

Probabilidade de superar a produção	MWh/año	Horas
(%)	MWII/ allo	Equivalentes
50	186.257	3.004
70	172.392	2.781
90	152.373	2.458

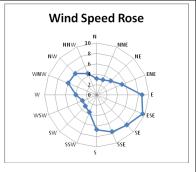
Projetos eólicos: Cacula (Huila)

44 aerogeradores x 2 MW: 88 MW 26 km N=O de Cacula

Redução esperada de emissões CO₂:

147.033 Tn


Probabilidade de superar a produção	MWh/aãa	Horas
(%)	MWh/año	Equivalentes
50	230.963	2.625
70	208.611	2.371
90	176.336	2.004

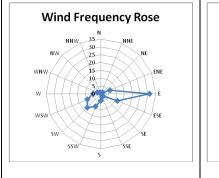


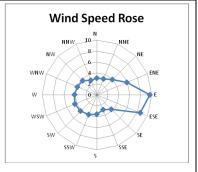
Projetos eólicos: Benjamin (Benguela)

26 aerogeradores x 2 MW: 52 MW 40 km a SE de Ganda


Redução esperada de emissões CO₂:

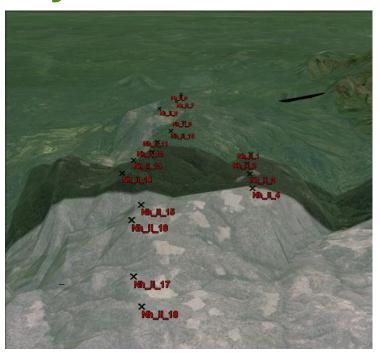
79.427 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)	MWII/ allo	Equivalentes
50	124.765	2.399
70	113.747	2.187
90	97.839	1.882

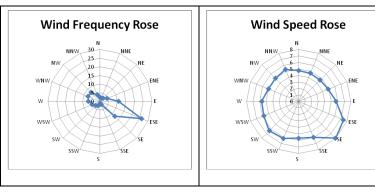


Projetos eólicos: Gastão (Kwanza Norte)

15 aerogeradores x 2 MW: 30 MW 35 km a S de Camabatela


Redução esperada de emissões CO₂:

42.464 Tn

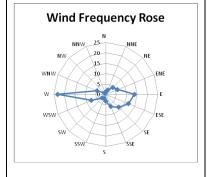

Probabilidade de superar a produção	MWh/año	Horas
(%)	MWII/ allo	Equivalentes
50	66.704	2.223
70	60.807	2.027
90	52.293	1.743

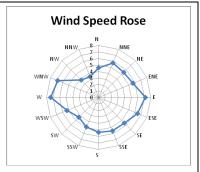
Projetos eólicos: Nharea (Bie)

18 aerogeradores x 2 MW: 36 MW 11 km a N de Nharea

Redução esperada de emissões CO₂:

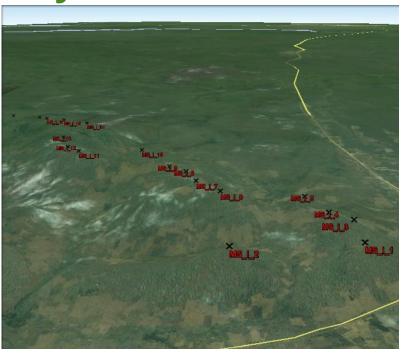
58.253 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	91.505	2.542
70	82.083	2.280
90	68.478	1.902

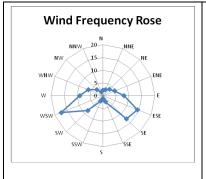


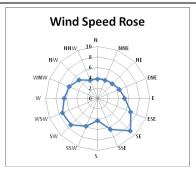
Projetos eólicos: Calenga (Huambo)

42 aerogeradores x 2 MW: 84 MW 12 km a O de Caala


Redução esperada de emissões CO₂:

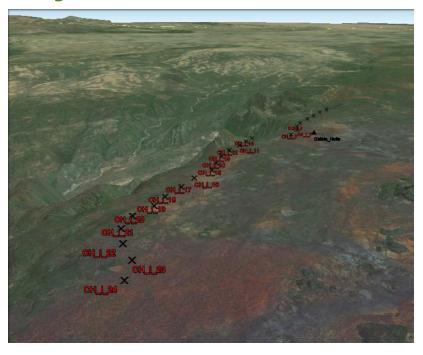
118.558 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	186.234	2.217
70	163.152	1.942
90	129.825	1.546

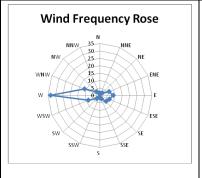


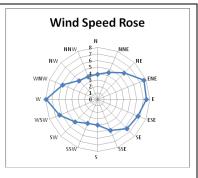
Projetos eólicos: Mussende I (Kwanza Sul)

18 aerogeradores x 2 MW: 36 MW 1 km a NE de Mussende


Redução esperada de emissões CO₂:

58.990 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	92.662	2.574
70	83.347	2.315
90	69.898	1.942

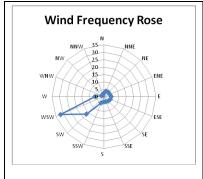


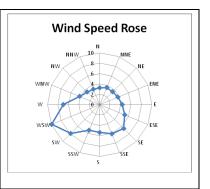
Projetos eólicos: Chibia (Huila)

39 aerogeradores x 2 MW: 78 MW 40 km a S de Chibia

Redução esperada de emissões CO₂:

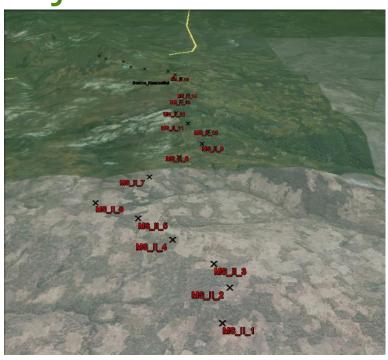
77.974 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	122.493	2.552
70	109.903	2.290
90	91.726	1.911

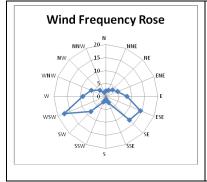


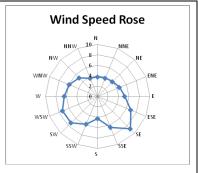
Projetos eólicos: Kiwaba Nzoji II (Malanje)

21 aerogeradores x 2 MW: 42 MW 70 km a N de Malanje


Redução esperada de emissões CO₂:

76.821 Tn


Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	120.672	2.873
70	111.696	2.659
90	98.736	2.351



Projetos eólicos: Mussende II (Kwanza Sul)

22 aerogeradores x 2 MW: 44 MW 1 km a NE de Mussende

Redução esperada de emissões CO₂:

67,279 Tn

Probabilidade de superar a produção	MWh/año	Horas
(%)		Equivalentes
50	105.683	2.402
70	95.059	2.160
90	79.720	1.812

FREDA

Projetos solares PV

Padrão de configuração à 10 MW

REDUÇÃO EMISSÕES CO ₂ - ENERGIA SOLAR			
Parque	No	Energia	Redução CO ₂
	Módulos	Produzida	Redução CO ₂
		[MWh]	[Tn]
FV Caraculo (NAM)	36.480	19.811	12.612
FV Matala (HUI)	36.480	19.884	12.658
FV Namacunde (CUN)	36.480	20.154	12.830
FV Ganda/Alto Catumbela (BL)	36.480	20.042	12.759
FV Lubango (HUI)	36.480	20.284	12.913
FV Benguela (BL)	36.480	18.744	11.933
FV Cambongue/Namibe (NAM)	36.480	17.033	10.843
FV Quipungo (HUI)	36.480	19.819	12.617
FV Lobito/Catumbela (BL)	36.480	18.726	11.921
FV Techamutete (HUI)	36.480	19.340	12.312
TOTAL		193.836	123.398

Centro Recolha e Analise de dados MINEA

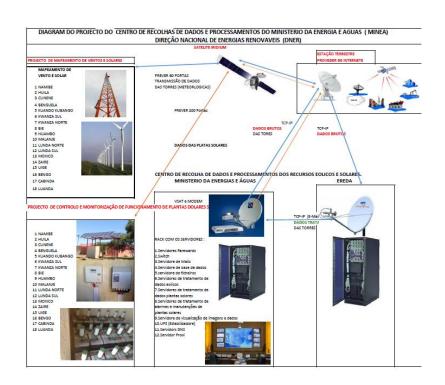
OBJECTIVO DO CENTRO DE RECOLHA DE DADOS

A base de dados e o conjunto de informações organizadas e que se relacionam, e que permite a integração, o dimensionamento e a análise de dados em uma infraestrutura confiável, o Banco de Dados é cada vez mais fundamental para a definição de estratégias organizacionais e a aplicação de soluções para os mais variados fins.

REDA

RESULTADOS MAPEAMENTO

Centro Recolha e Analise de dados MINEA


Com o desenvolvimento da tecnologia, os dados adquirem a necessidade de grande quantidade de volume na memória de armazenamento do computador (RAM), de modo que crie e extraia informações importantes que possam influenciar de alguma forma nas tomadas de decisões.

O banco de dados é considerado como um conjunto de elementos integrados entre si, que se relacionam de forma lógica consolidando registros armazenados de forma separada em arquivos que são fornecidos para as aplicações em um banco independente dos programas de aplicação utilizada e de dispositivos já armazenados.

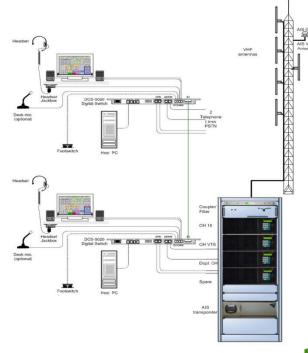
Centro Recolha e Analise de dados MINEA

Diagram funcional do Objectivo do Centro de recolha de dados e com Banco de Dados.

Centro Recolha e Analise de dados MINEA

OBJECTIVO DO CENTRO DE RECOLHA E ANALISE DOS DADOS DOS RECURSOS RENOVAVEIS EOLICA

O centro de dados é o ponto nevrálgico que integra todos os módulos onde são centralizados todas as comunicações e dados relativos monitorização dos dados das torres de medições dos ventos e solares



Centro Recolha e Analise de dados MINEA

O Centro tem um conjunto de ferramentas de apoio para o controlo operacional e da fiscalização dos dados proveniente das torres de medições e várias funcionalidades tal como:

- 1-Consultar num ambiente Georreferenciada os dados dos ventos e solares.
- 2-Consultar a partir de um interface único e centralizando todas informações existente relativamente ao mapeamento dos recursos eólicos e solares.
- 3-Criar Alertas e Procedimentos com base em eventos do bom funcionamento dos equipamentos montados nas torres de medições eólicos e solares.

ERED/

46

Centro Recolha e Analise de dados MINEA

COMUNICAÇÕES

Foi concebida de forma a dar resposta às necessidades das comunicações presentes e ser compatível com as necessidades futuras.

Para as necessidades futuras contemplam-se aqui desde já um tipo de comunicação que foram usados nas torres de medições dos ventos e solares

9522B Iridium Satellite Modem & COM9522B Interface Modem

EREDA

WWW.EREDA.COM

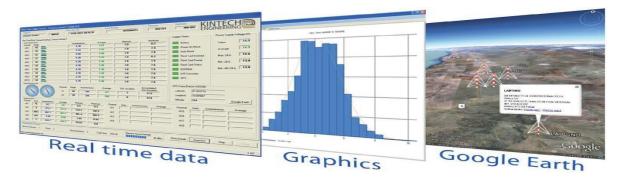
Centro Recolha e Analise de dados MINEA

O SOFTWARE EOL MANAGER

E um software para monitorização remota das torres de medições desenvolvidos para os datas loggers (registrador de dados) garantem um acesso seguro e fácil aos dados.

O software permite fazer a descarga automática de todos os dados das torres anemométricas em qualquer dia e hora, como parte integral da aquisição dos dados.

A arquitetura do software foi criado pensando no usuário: é uma interface completa, muito intuitiva e fácil de usar.


As torres anemométricas produz gráficos que são claros e fáceis de entender, rosa-dos-ventos, sombras do mastro, melhor rendimento ("best fit") Weibull, etc. A ferramenta dos gráficos permite exercer um controle avançado dos dados.

EREDA

RESULTADOS MAPEAMENTO

Centro Recolha e Analise de dados MINEA

O software oferece um melhor controle de vários sítios de medição de vento com conectividade automática e em tempo real para a monitoração dos dados.

- Gráficos de linha, roseta, barram, dispersão, sombras, etc.
- Configuração do logger com calibrações e desvios Conexão em tempo real (GPRS/GSM/SATÉLITE).
- Descarga automática dos dados registrados

O software apresenta várias e novas funcionalidades, incluindo gráficos avançados para a análise de dados (gráficos de análise Weibull de melhor rendimento ("best fit") e de sombras, etc.), tornando mais fácil controlar os vários sítios de medição de vento.

EREDA

RESULTADOS MAPEAMENTO

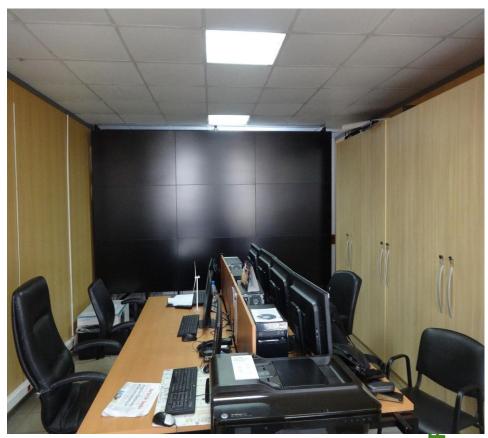
Centro Recolha e Analise de dados MINEA

Os registradores de dados montadas nas torres para campanhas de medição de vento e solar trata-se da combinação perfeita entre a tecnologia de aquisição de dados e o software mais avançado para um moderno procedimento de medição.

O datalogger (registrador de dados) de terceira geração fabricado pela Kintech Engineering. O EOL Zenith apresenta uma velocidade de amostragem de 1Hz (em cumprimento com a norma IEC 61400-12), cálculo da intensidade da turbulência (TI30), desvio padrão, MÁX. e MÍN para todos os canais de entrada e diagnóstico avançado de erros nos sensores (por exemplo, desvio padrão dos Wind Vanes.

Centro Recolha e Analise de dados MINEA

CONSULTA DE DADOS


Constituído por três plataformas, cada uma preparada para funcionar num determinado ambiente.

- A)-INTRANET, Foi desenhado para operar num ambiente multiutilizador em rede local, tirado vantagem dos acessos locais de alto débito.
- B)-**INTERNET**, uma ferramenta que permitira oferecer as funcionalidades modernas para operar num ambiente de rede pública
- C)-**Web**, uma ferramenta utilizada pela Internet, que permite o acesso às principais funcionalidades do sistema através de Portáteis, tabletes, Smartfones, Telemóveis e Ipads

Centro Recolha e Analise de dados MINEA

- O vídeo wall, serve para disponibilizar toda a informação comum e geral das actividades de fiscalização a realizar. Será possível além de se visualizar a actividade do mapeamentos de ventos, solares e outros tipo de recursos, ler os alarmes gerais, avisos ou simplesmente ver o estado geral das torres de medições eólicos e solares.
- O vídeo wall do centro de controlo do Ministério e composto por 9 monitores de marca SAMSUNG de 55 polegada, gerido por um servidor de imagens que tem possibilidade de visualizar varias informações em tempo real em cada monitor diferente.

EREDA

RESULTADOS MAPEAMENTO

Centro Recolha e Analise de dados MINEA

VISÃO DO CENTRO DE RECOLHA DE DADOS E PROCESSAMENTOS

Esta ferramenta servira para a elaboração de uma base de dados, que permitira as direções do MINEA, ter acesso a varias informações deste a produção elétrica até ao consumidores da energia elétrica dependente das fontes que serão conectadas ao centro.

Será importante acções de consultoria técnica com o objetivo de apoiar e assessorar o cliente em matéria de análise e planeamento estratégico da exploração e evolução do seu sistema global de Monitorização Controlo de dados dos recursos eólicos e solares.

Estas ações terão lugar durante a implementação do sistema ao longo das suas diferentes fases.

Obrigado pela sua atenção: WWW.EREDA.COM